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Let R be a commutative ring with 1, let. R[X,,...,Xn] be the polynomial ring in
X1,...,Xn over R and let & be an arbitrary group of permutations of {Xy,...,Xn}.
The paper presents an algorithm for computing a small finite basis B of the R-algebra
of G-invariant polynomials and a polynomial representation of an arbitrary G-invariant
polynomial in R{Xy,..., X»] as & polynomial in the polynomials of the finite basis B.
The algorithm works independently of the ground ring R, and the basis B contains
only polynomials of total degree < maxz{n,n(n —1)/2}, independent of the size of the
permutation group G.

1. Introduction

A classical result in invariant theory due to E. Noether (1916) asserts that for any finite
matrix group I' the ring K[X1,...,Xpn)' of [-invariant polynomials in K[Xy,...,X,] is
finitely generated by polynomials of total degree < |I'|. The proof of Noether’s theorem
is constructive, but it depends on the fact that the characteristic of the ground field
K is zero. The proof fails for fields of prime characteristic and more general ground
rings. Noether was aware of this deficiency, and proved later an analogous theorem that
K([X1,..-, Xq)¥ is always finitely generated as a K-algebra, regardless of whether |T'| is
invertible in X or not (Noether, 1926). Unfortunately, the proof is non-constructive and
does not produce any bounds on the degree of the generators.

This note restricts the class of group actions to permutation groups G, which play an
important réle in algebra and applications. We present a novel method for computing a
finite basis for the ring of G-invariant polynomials that is for most permutation groups G
superior to the method of Noether. First, it computes a basis for the ring R[X,..., X%
of G-invariant polynomials in B[X,..., X} for an arbitrary ground ring R. Second, the
basis B contains only polynomials of maximal variable degree < max{l,n -1} and total
degree < maez{n,n(n — 1)/2}, independent of the size of the permutation group G. The
results of this note are already known for rings K [X1,..., Xn|® with char(K) = 0 (see
Schmid, 1991: section 9). An alternative approach which gives the same degree bounds
may be found in Garsia and Stanton (1984)}.
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QOur algorithmic approach is a generalization of the classical algorithm for symmetric
polynomials presented, for example, in Becker et al. (1993), section 10.7, or Sturmfels
{1993), section 1.1. The algorithm represents any f € R[X3,..., X,] as a finite linear
combination of the elements of B with symmetric polynomials as coefficients, independent
of the given ground ring R.

The plan of the paper is as follows: Section 2 presents the basic definitions and mo-
tivates our approach. Section 3 contains a comprehensive description of our reduction
algorithm for G-invariant polynomials. We prove degree bounds for the polynomials of
the bases B, and illustrate our method by an example. In Section 4 we conclude with
some remarks on the complexity of our algorithm, and show that our degree bounds
are optimal for permutation groups G from the point of view of worst case complexity.
Finally, we deduce a bound for the maximal variable degree of the basis polynomials in
dependence of |G |.

2. Basics

R (K) is an arbitrary commutative ring (field) with 1, R[X4,...,X,] is the com-
mutative polynomial ring over R in the indeterminates X;, T is the set of terms (=
power-products of the X;) in R[X1,...,.X,), M = {et [ a € R,t € T} is the set of
monomials in R[X1,...,X,}, and T{f}, M(F) is the set of terms and monomials occur-
ring in f € R[X1,..., Xx] with non-zero coefficients, respectively. AO(T) is the set of all
admissible orders on T. For a fixed admissible order < on T and f € R[X1,..., X,], we
let HT(f), HC(f), HM(f} denote the highest term ¢ w.r.t. < in T(f), the coefficient
a of t in f and the monomial at of f, respectively. In this paper we fix <y as the
lexicographical order on T.

G denotes any permutation group operating on the n indeterminates X;,..., X,. Any
7 € G extends in a unique way to an endomorphism of the R-algebra R[X1,..., X4
defined by n(f) := f(x(X1),7(X2),...,7(Xn)). f € R[X1,...,Xn] is G-invariant, if
f=n(flforallm eqG.

R[X1,...,Xs]¢ denotes the R-algebra of G-invariant polynomials in R[X},..., Xa}.
orbitg{t) = Zae{w(t)hrGG} s is the G-invariant orbit of ¢t € T. orbitg(t) is a G-invariant
polynomial, and if f € R[X3y,...,X.]% and at € M(f), then M(a - orbit(t)} € M(f).
8, and A, denote the symmetric and the alternating permutation group, respectively.

The multilinear S,-invariant polynomials o; = orbitg (X;...X;), 1 <i < n are the
elementary symmetric polynomials (see van der Waerden, 1971: section 33). #1, ..., on
form a finite SAGBI basis for R[Xl,...,Xn]S" (see Sturmfels, 1993: proof of theorem
1.1.1). The method of SAGBI bases is the natural subalgebra analogue to Grébner bases
for ideals (Kapur and Madlener, 1989; Robbiano and Schweedler, 1990}. The following
lemma shows, that R[X1,...,X,] has in general no finite SAGBI basis.

LEMMA 2.1. The invariant ring R[X1, X2, X34 has no finite SAGBI basis.

PRrROOF. Assume that iﬂ:l,...,apk} is a finite SAGBI basis of R[Xy, X2, X3]** with
HT () = X;i’X;i2X3i‘°‘. We must have e;, > e, = e, or e;; > e;; > e;,. Let
d=maz{e;, |1 €i<k,1<j<3)andlet f=orbits, (X1 XE) € R[Xy, Xa, Xa]#2.
1; is involved in a reduction of f implies that e;, = 0, i.e. either HT(3;) = Xfi‘ with
d> e = 0or HT{¢;) = X:"X;"z with d > e;, > e;; > 0. In any case, we have to
multiply at least two terms Xle"‘ X;“‘ with d > e;, > e, > 0 for the reduction of f in
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order to obtain HT(f}) =X f+1X g. Any such product has a difference of at least two in
the exponents of X; and X3 which shows that HT(f) cannot be a product of HT (3)
for 1 € i € k (contradiction). O

In other words the classical algorithm for symmetric polynomials cannot be generalized
for polynomials in R[X,...,X ﬂ]G. The next section introduces a reduction method
which works for arbitrary permutation groups G € S,.

3. The reduction method

We prove in this section that every polynomial f € R[Xq,..., X n]G has a representa-
tion as a polynomial over the ground ring R in G-invariant orbits with maximal variable
degree < maz{1l,n—1} and total degree < maz{n,n{n—1)/2}. The proof is constructive
and leads to an algorithm which represents f as a finite R|o1,...,05)-linear combination
of special G-invariant orbits.

DEFINITION 3.1. Lett € T andx € Sy, such that n(t) = X[' .. . X&r andey > ep > ... >
en. Then desc(t) = n(t) is the descending term of t and Q(t) = o172 ... *aln
is the elementary symmetric product of t.

REMARK 3.2. There exists no infinite chain t1, tg, ... € T with desc(t;)} >1er desc(t;1y)
or (desc(t;) = dese(tiy1) A ti >1ep tiy1) for alli € N, because <jep € AOQ(T).

LEMMA 3.3. Lett € T. Thena-t € M(2(1)) enda =1,

ProoF. We havea- X' ... X5 = a-desc(t) € M((t)) and so Qt) = QX ... X&) =
€)1 —€ez €n_1=€n _g
o] ey “ogr. Furthermore,

HM(o('™% .. o7») = HM(o7'™®)...HM (o)
= HM{(oy)27%2. . . HM{o,)*
XPTO (X1, Xp) = XP L Xem,

i.e. @ = 1. By symmetry of §)(t}, the same holds for t. J

LEMMA 3.4, Lett = X7'.. X be descending. Then for all s € T(Q(t) — orbitg(t)) the
following holds: desc(t) > jep desc{s) or (desc(t) = desc(s) At > e 8).

Proor. By Lemma 3.3 we have t = HM (Q(t)), and so desc(t) >jp desc(s) or (desc(t) =
desc(s) A t >y 5) holds for all s € T(Q(t) — orbitg(t)). O

DEFINITION 3.5, Lett=X7'.. . X2, let®# I C {1,...,n}, and let mg and m denote
the minimum and mazimum of {e; | i € I'}, respectively. Then t is k-connected w.r.t. I,
if | =k, mi=max{ey,...,en}, and {e: | i € I} is the set of all integers between mg
and my. t is marimal k-connected, if t is k-connected and not (k+1)-connected or k = n.
A mazimal n-connected term t is called special, if either e; = 0 for some i € {1,...,n}
ore; =...=en = 1. orbitg(t) is a special G-invariant orbit, if t is a special term.

The number of special terms in R[X1,...,X,)] is finite, and every special term has
a maximal variable degree < maxz{l,n — 1} and a total degree < maz{n,n(n — 1)/2}.
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The elementary symmetric polynomials o1, ..., g, are finite sums of special G-invariant
orbits,

DEFINITION 3.6. Lett = X' .. X% be non-special and maximal k-connected w.r.t. I.
The reduced term of t is defined as Red(t) = Xf‘ . X% withd; =e;—1,i eI and
d; = e;, otherwise.

LEMMA 3.7. Let t = X{'... X2 be non-special and mazimal k-connected w.r.t. I and
let w € T such thatt = v - Red(t). Then the following holds {see Gébel, 1992: theorem
4.16):

{i) descEt) >lex desc(s) for all s € T(qu; - Red(t) — t)
(1) desc(t) >ier desc(s) for all s € T(Qu) - orbitg(Red(t)) — orbitg(t)).

Proor. (i} is a consequence of Lemma 3.3 and Definition 3.6. By Lemma 3.3 we have
v € M (§2(u)). Definition 3.6 ensures that only the term u € T(£}(u)} is equal to the
power product of the variables belonging to the indices in the index set /. And so,
dese(t) >pe. desc(s) holds for all other terms s € T(2(u) - Red(t) — t).

(ii} follows from the definition of the G-invariant orbit, Definition 3.6 and the fact that
u) € R[X1,.-., Xn)%. (i} implies that for all x € G the following holds:

desc(t) = dese(n (1)} > jex desc(s) for all s € T{Q2(u) - Red(n(t)) — = (t)) (3.1)
Hence, desc(t) >iex desc(s) for all s € T(S(x) - orbitc(Red(t)) — orbite(t)). O

DEFINITION 3.8. Let tg = t be mazimal ko-connected w.r.t. Iy, let t; = Red{t;_1} be
mazimal k;-connected w.r.t. I; for 1 <4 < r and let t, be o special term, r € N. Then
t is mazimal (k1,...,kg)-connected w.rt. T = {[p,...,I,.} where k; 1s the number of
elements I e T with |[T|=i,1<1i < n.

For ¢t maximal (k1,...,ky)-connected w.r.t. {Ip,..., [,} [y CLiholdsfor0 < k <1 <r.
Special terms are maximal (0, ...,0)-connected w.r.t. §.

DEFINITION 3.9. Lett = X7'... XE~ be non-special and mazimal (ky,. .., k,)-connected
wr.t. [= {Jo,...,I;}. The totei-reduced term of t is defined as RED(3) = Xf‘ ...Xﬂ"
with d; = e; — k, if k different elements of [’ contain i.

LEMMA 3.10. Let t = X7'... X2 be non-special and mazimal (ky,...,k,)-connected
w.rt. T and let u € T such that t = w- RED(t). Then the following holds:

(i) desc(t) >iex dese(s) for alls € T(Qu) - RED(t) — t)
(ii) desc(t) > iex desels) for all s € T(Qu) - orbitg(RED(t)) — orbita(t)).

PROOF. (i) is a consequence of Lernma 3.3 and Definition 3.9 (see also Lemma 3.7). By
Lemma 3.3 we have u € M (§2(u)). Definition 3.9 ensures that only the term u € T(£2(u))
is equal to the power product of the variables belonging to the indices in the index sets
of . And so0, desc(t) >1er desc(s) holds for all other terms s € T(Q{u) - RED(t) — t).

(ii} follows from the definition of the G-invariant orbit, Definition 3.9 and the fact that
Q(u) € R[X1,...,Xn)%. (i) implies that for all # € G the following holds:

desc(t) = desc(m(t)) >iex desc(s) for all s € T(S(u) - RED(=(t)) — m(t)) {3.2)
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Hence, dese(t) >tex desc(s) for all s € T{S(u) - orbitc(RED(t)) — orbitg(t)). U

THEOREM 3.11. If R is any commutative Ting and G any subgroup of the n x n permu-
tation matrices, then the invariant ring R[X1,... ,Xn]G is generated in degree at most
nin — 1)/2.

PRrRoOOF. We prove this theorem over the following algorithmm which represents an ar-
bitrary f € R[X1,...,Xx]® as a finite R[o1,...,0x]-linear combination of special G-
invariant orbits.

ALGORITHM 3.12.

1 INPUT f € R[X1,..., Xn]%;

2 f:=F:py:=0fort€T special;

3 WHILE f #0 DO

4 select at :=aXf‘...X,f_"€M(f) such that X
desc(t) >iez desc(s) or (desc(t) = desc(s) At >iex 5) foralls € T(FINL;

5 IF (t is descending) THEN /* Lemma 3.4 */

6 PLi=p14a- XD XX

7 fi=f—a-Q1);

8 ELSIF (t is non-special) THEN /* Lemmae 3.10 (i) */

9 Xf X8 .= RED(t); oF . ok = Qx0T X2,
10 PRED(t) = PRED(H + @ X{* ... Xk,
11 f=f—a Qx84 xe—dn) . orbitg(RED(t));

12 ELSE py:=p,+a; f == f —a - orbitg(t); ENDIF;
13  ENDWHILE;
14 OUTPUT f = Ecerspecialp*("h ooy @g) sorhitg(t) with py € R[X1, ..., Xal;

The loop invariant is f = f+ EteTSpecialpt(Jl' ..., 0n) - orbitg(t). By Lemma 3.4
and Lemma 3.10 (ii) every pass through the while-loop removes at least a-orbite(t) from
f and adds only terms s to f with desc(t) >z desc(s) or (desc(t) = desc(s) A t > ez 5)
for all s. The termination is ensured by Remark 3.2, ie. f = { will be reached after
finitely many cycles. RED(t) is a special term for every t € T, and therefore, f is a finite
Rloy, ..., 0p)-linear combination of special G-invariant orbits. a

ExaMpLE 3.13. The Algorithm 3.12 has been tmplemented in MAS (Kredel, 1992) and
has proven to perform well. Let f = orbit 4 (X$X5X3) € R[X1, X3, X3, X4]**. Then we
obtain f == —0102 + 2090304 + crfogu - 010304 + o3 orbita (X3XZ2X,).

~, e g

'

1 Px3 2
P x3xdxg

Summarizing the results of this section, we have found that the Algorithm 3.12 rep-

resents any f € R[Xi,...,Xn]® as a finite Roy,...,0,)-linear combination of special
G-invariant orbits, i.e.

f= Z pi(o1,...,00) - orbitg(t) (3.3)

teT special



290 M. Géabel

with p: € R[X1,..., Xn|. The algorithm works independently of the ground ring R, and
the finite basis B which generates R[X1,...,X,]¢ consists of all special G-invariant
orbits.

4, Concluding remarks

The head term of a polynomial in R[Xq,..., Xﬂ]S" is always descending w.r.t. <., i.e.
Algorithm 3.12 coincides for the symmetric group S, exactly with the classical algorithm
for symmetric polynomials. This strong relationship can be found again in the following
complexity bound for the number of reduction steps.

LEMMA 4.1, Let f € R[Xl,...,Xn]G, let d be the mazimal variable degree of f, and
let #{d,n) be the number of descending terms t € T with mazimal variable degree
< d. Then at most #(d,n) - |9n]/|G| reduction steps are mecessary to compute f =

2ier specialPi(01, . on) - orbit(t).

Proor. It is easy to verify, that every S,-invariant orbit is a finite sum of not more
than {S.|/|G| G-invariant orbits. Furthermore, every G-invariant orbit occurring in the
reduction process of Algorithm 3.12 has to be reduced only once. Hence, at most #(d, n)-
ISn|/|G | reduction steps are necessary. [

The next lemma shows that our degree bounds are optimal for permutation groups G
from the point of view of worst case complexity.

LEMMA 4.2. For alln > 1 exists a R-algebra of G -invariant polynomials R[X1, ..., Xu]®
which has no finite basis of G-invariant polynomials with mazimal varicble degree <
maz{l,n — 1} or total degree < maz{n,n(n —1)/2}.

PROOF. (n = 1) trivial. (n = 2) Let {¢1,...,¢1} be a finite basis of A[X;, X2]% with
maximal variable degree < 1 or total degree < 2 for all ¥y, i.e. ¥; = ai(X1 + Xa) + b
with a;,b; € R for 1 < i < 1. Then there exists a p € R[X},..., X;] with R[X;, X3]%? 3
X1X2 = p(yn,...,¥) and a p € R[X] with o9 = X1X2 = p(X; + X2} = p(o1). This
implies that o1, a3 € R[X1, X3)®® are algebraically dependent (contradiction). (n > 3)
Let {41,...,%} be a finite basis of R[Xy,..., X,]*" with maximal variable degree <
{rn — 1) or total degree < n{n — 1}/2 for all ¢,;. Then 1; is Sp-invariant for 1 < i < I,
because every t € T (1) contains at least two equal exponents. Hence, {11, ...,4:} cannot
be a finite basis of R[X1,..., X,]*" (contradiction). O

QOur last lemma combines the degree bound of Noether with our results and deduces
a bound for the maximal variable degree in dependence of the order of the permutation
group G.

LEMMA 4.3. Let char(K) = 0. Then every polynomial in K[X1,...,Xn]® has a rep-
resentation as a polynomial over the ground fleld K in speciel G-invarient orbits with

magimal variable degree < maz{k € N | k < /2|G}+ 1~ 1}

ProOF. The basis of Noether for R[X1,...,Xa]® consists of all G-invariant orbits with
total degree < |G|. The application of Algorithm 3.12 to any non-special G-invariant
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orbit in B leads to a representation in special G-invariant orbits with total degree < |G|,
which implies that R[Xy,..., X,]€ is generated by special G-invariant orbits with total
degree < |G|. Hence, special G-invariant orbits with total degree < |G| have maximal

variable degree < maz{k € N | k < /2|G|+ % — %} -0
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